Ionized calcium concentrations in squid axons
نویسندگان
چکیده
Values for ionized [Ca] in squid axons were obtained by measuring the light emission from a 0.1-mul drop of aequorin confined to a plastic dialysis tube of 140-mum diameter located axially. Ionized Ca had a mean value of 20 x 10(-9) M as judged by the subsequent introduction of CaEGTA/EGTA buffer (ratio ca. 0.1) into the axoplasm, and light measurement on a second aequorin drop. Ionized Ca in axoplasma was also measured by introducing arsenazo dye into an axon by injection and measuring the Ca complex of such a dye by multichannel spectrophotometry. Values so obtained were ca. 50 x 10(-9) M as calibrated against CaEGTA/EGTA buffer mixtures. Wth a freshly isolated axon in 10 mM Ca seawater, the aequorin glow invariably increased with time; a seawater [Ca] of 2-3 mM allowed a steady state with respect to [Ca]. Replacement of Na+ in seawater with choline led to a large increase in light emission from aequorin. Li seawater partially reversed this change and the reintroduction of Na+ brought light levels back to their initial value. Stimulation at 60/s for 2-5 min produced an increase in aequorin glow about 0.1% of that represented by the known Ca influx, suggesting operationally the presence of substantial Ca buffering. Treatment of an axon with CN produced a very large increase in aequorin glow and in Ca arsenazo formation only if the external seawater contained Ca.
منابع مشابه
Intracellular calcium buffering capacity in isolated squid axons
Changes in ionized calcium were studied in axons isolated from living squid by measuring absorbance of the Ca binding dye Arsenazo III using multiwavelength differential absorption spectroscopy. Absorption changes measured in situ were calibrated in vitro with media of ionic composition similar to axoplasm containing CaEGTA buffers. Calcium loads of 50-2,500 mumol/kg axoplasm were induced by mi...
متن کاملMitochondria and other calcium buffers of squid axon studied in situ
Continuous nondestructive monitoring of intracellular ionized calcium in isolated squid axons by differential absorption spectroscopy (using arsenazo III and antipyrylazo III) was used to study uptake of calcium by carbonyl cyanide, p-trifluoromethoxy-phenylhydrazone (FCCP)- and (or) cyanide (CN)-sensitive and insensitive constituents of axoplasm. Known calcium loads imposed on the axon by stim...
متن کاملEffect of ATP on the Calcium Efflux in Dialyzed Squid Giant Axons
Dialysis perfusion technique makes it possible to control the internal composition of squid giant axons. Calcium efflux has been studied in the presence and in the virtual absence (<5 microM) of ATP. The mean calcium efflux from axons dialyzed with 0.3 microM ionized calcium, [ATP](i) > 1,000 microM, and bathed in artificial seawater (ASW) was 0.24 +/- 0.02 pmol.cm(-2).s(-1) (P/CS) (n = 8) at 2...
متن کاملMagnesium efflux in dialyzed squid axons
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflu...
متن کاملIonized magnesium concentration in axoplasm of dialyzed squid axons.
Magnesium ion is a significant constituent of cell cytoplasm and participates in many intracellular enzymatic reactions. Although total cell magnesium can be rather easily determined by atomic absorption spectroscopy, the free magnesium is more difficult to measure and is much less than the total because of magnesium binding to cellular organelles or ionic constituents. Moreover, since magnesiu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 67 شماره
صفحات -
تاریخ انتشار 1976